skip to main content


Search for: All records

Creators/Authors contains: "Vandewoude, Sue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Seasonal variation in habitat use and animal behavior can alter host contact patterns with potential consequences for pathogen transmission dynamics. The endangered Florida panther (Puma concolor coryi) has experienced significant pathogen-induced mortality and continues to be at risk of future epidemics. Prior research has found increased panther movement in Florida’s dry versus wet seasons, which may affect panther population connectivity and seasonally increase potential pathogen transmission. Our objective was to determine if Florida panthers are more spatially connected in dry seasons relative to wet seasons, and test if identified connectivity differences resulted in divergent predicted epidemic dynamics. We leveraged extensive panther telemetry data to construct seasonal panther home range overlap networks over an 11 year period. We tested for differences in network connectivity, and used observed network characteristics to simulate transmission of a broad range of pathogens through dry and wet season networks. We found that panthers were more spatially connected in dry seasons than wet seasons. Further, these differences resulted in a trend toward larger and longer pathogen outbreaks when epidemics were initiated in the dry season. Our results demonstrate that seasonal variation in behavioral patterns—even among largely solitary species—can have substantial impacts on epidemic dynamics.

     
    more » « less
  2. null (Ed.)
    Pathogen management strategies in wildlife are typically accompanied by an array of uncertainties such as the efficacy of vaccines or potential unintended consequences of interventions. In the context of such uncertainties, models of disease transmission can provide critical insight for optimizing pathogen management, especially for species of conservation concern. The endangered Florida panther experienced an outbreak of feline leukaemia virus (FeLV) in 2002–2004, and continues to be affected by this deadly virus. Ongoing management efforts aim to mitigate the effects of FeLV on panthers, but with limited information about which strategies may be most effective and efficient. We used a simulation-based approach to determine optimal FeLV management strategies in panthers. We simulated the use of proactive FeLV management strategies (i.e. proactive vaccination) and several reactive strategies, including reactive vaccination and test-and-removal. Vaccination strategies accounted for imperfect vaccine-induced immunity, specifically partial immunity in which all vaccinates achieve partial pathogen protection. We compared the effectiveness of these different strategies in mitigating the number of FeLV mortalities and the duration of outbreaks. Results showed that inadequate proactive vaccination can paradoxically increase the number of disease-induced mortalities in FeLV outbreaks. These effects were most likely due to imperfect vaccine immunity causing vaccinates to serve as a semi-susceptible population, thereby allowing outbreaks to persist in circumstances otherwise conducive to fadeout. Combinations of proactive vaccination with reactive test-and-removal or vaccination, however, had a synergistic effect in reducing the impacts of FeLV outbreaks, highlighting the importance of using mixed strategies in pathogen management. Synthesis and applications. Management-informed disease simulations are an important tool for identifying unexpected negative consequences and synergies among pathogen management strategies. In particular, we find that imperfect vaccine-induced immunity necessitates further consideration to avoid unintentionally worsening epidemics in some conditions. However, mixing proactive and reactive interventions can improve pathogen control while mitigating uncertainties associated with imperfect interventions. 
    more » « less
  3. Abstract

    Feline foamy virus (FFV) is a contact-dependent retrovirus forming chronic, largely apathogenic, infections in domestic and wild felid populations worldwide. Given there is no current ‘gold standard’ diagnostic test for FFV, efforts to elucidate the ecology and epidemiology of the virus may be complicated by unknown sensitivity and specificity of diagnostic tests. Using Bayesian Latent Class Analysis, we estimated the sensitivity and specificity of the only two FFV diagnostic tests available—ELISA and qPCR—as well as the prevalence of FFV in a large cohort of pumas from Colorado. We evaluated the diagnostic agreement of ELISA and qPCR, and whether differences in their diagnostic accuracy impacted risk factor analyses for FFV infection. Our results suggest ELISA and qPCR did not have strong diagnostic agreement, despite FFV causing a persistent infection. While both tests had similar sensitivity, ELISA had higher specificity. ELISA, but not qPCR, identified age to be a significant risk factor, whereas neither qPCR nor ELISA identified sex to be a risk factor. This suggests FFV transmission in pumas may primarily be via non-antagonistic, social interactions between adult conspecifics. Our study highlights that combined use of qPCR and ELISA for FFV may enhance estimates of the true prevalence of FFV and epidemiological inferences.

     
    more » « less
  4. Abstract

    Urban expansion can fundamentally alter wildlife movement and gene flow, but how urbanization alters pathogen spread is poorly understood. Here, we combine high resolution host and viral genomic data with landscape variables to examine the context of viral spread in puma (Puma concolor) from two contrasting regions: one bounded by the wildland urban interface (WUI) and one unbounded with minimal anthropogenic development (UB). We found landscape variables and host gene flow explained significant amounts of variation of feline immunodeficiency virus (FIV) spread in the WUI, but not in the unbounded region. The most important predictors of viral spread also differed; host spatial proximity, host relatedness, and mountain ranges played a role in FIV spread in the WUI, whereas roads might have facilitated viral spread in the unbounded region. Our research demonstrates how anthropogenic landscapes can alter pathogen spread, providing a more nuanced understanding of host-pathogen relationships to inform disease ecology in free-ranging species.

     
    more » « less
  5. Abstract

    Human activity affects plant and animal populations across local to global scales, and the management of recreation areas often aims to reduce such impacts. Specifically, by understanding patterns of human activity and its influence on animal populations, parks and recreation areas can be managed to provide spatial and temporal refuge to wildlife most sensitive to this type of human disturbance. However, additional research is necessary to understand how human activity influences wildlife populations, habitat use, and activity patterns for a diversity of wildlife species. We studied the potential impacts of human activity (as measured by nonmotorized recreationists) on populations and activity patterns of 12 mammal species, including herbivores and carnivores, from 63 motion‐activated cameras that sampled game trails and human trails with varying degrees of human activity along the Front Range of Colorado. Human activity was greatest during the day and minimal or absent during the night. All wildlife species in our study used human trails, although the extent to which human recreation altered the occupancy, relative habitat use, and activity patterns of wildlife varied across species, where some animals appeared to be more influenced by human activity than others. Some species (e.g., fox squirrel, red fox, and striped skunk) did not demonstrate a response to human activity. Other species (e.g., black bear, coyote, and mule deer) altered their activity patterns on recreation trails to be more active at night. Across all wildlife, the degree to which animals altered activity patterns on human trails was related to their natural activity patterns and how active they were during the day when human activity was greatest; species that exhibited greater overlap in natural activity patterns with humans demonstrated the greatest shifts in their activity, often exhibiting increased nocturnal activity. Further, some species (e.g., Abert’s squirrel, bobcat, and mountain lion) exhibited reduced occupancy and/or habitat use in response to human recreation. Managing spatial and temporal refuges for wildlife would likely reduce the impacts of human recreation on animals that use habitat in proximity to trail networks.

     
    more » « less
  6. Abstract

    Determining parameters that govern pathogen transmission (such as the force of infection, FOI), and pathogen impacts on morbidity and mortality, is exceptionally challenging for wildlife. Vital parameters can vary, for example across host populations, between sexes and within an individual's lifetime.

    Feline immunodeficiency virus (FIV) is a lentivirus affecting domestic and wild cat species, forming species‐specific viral–host associations. FIV infection is common in populations of puma (Puma concolor), yet uncertainty remains over transmission parameters and the significance of FIV infection for puma mortality. In this study, the age‐specific FOI of FIV in pumas was estimated from prevalence data, and the evidence for disease‐associated mortality was assessed.

    We fitted candidate models to FIV prevalence data and adopted a maximum likelihood method to estimate parameter values in each model. The models with the best fit were determined to infer the most likely FOI curves. We applied this strategy for female and male pumas from California, Colorado, and Florida.

    When splitting the data by sex and area, our FOI modeling revealed no evidence of disease‐associated mortality in any population. Both sex and location were found to influence the FOI, which was generally higher for male pumas than for females. For female pumas at all sites, and male pumas from California and Colorado, the FOI did not vary with puma age, implying FIV transmission can happen throughout life; this result supports the idea that transmission can occur from mothers to cubs and also throughout adult life. For Florida males, the FOI was a decreasing function of puma age, indicating an increased risk of infection in the early years, and a decreased risk at older ages.

    This research provides critical insight into pathogen transmission and impact in a secretive and solitary carnivore. Our findings shed light on the debate on whether FIV causes mortality in wild felids like puma, and our approach may be adopted for other diseases and species. The methodology we present can be used for identifying likely transmission routes of a pathogen and also estimating any disease‐associated mortality, both of which can be difficult to establish for wildlife diseases in particular.

     
    more » « less